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ABSTRACT

One of the basic mechanisms governing the magnitude of
fire damage in an urban area resulting from a nuclear attack is
the fire spread between individual structures. This paper
investigates the effects of varlious methodological assumptions,
using the basic physical models of fire spread by radiation
and firebrands contained in the IITRI model. As an introduction
to probabllistic effects, vafious regimes of solutions to fire
spread by radiation in individual tracts are obtained by simpli-
fying the IITRI model.

Th> spread of fire down rows of bulldings and in rectangu-
lar grilds, when each structure has a constant probability of
igniting adjacent structures, 1s followed through a Monte Carlo
simulation. Changes in fire spread patterns, as the probabil-
ities are changed, are illustrated. The effects of various
complicating features, such as random initial ignitions and
varying lgnition probabilities for each structure, are studied
individually. Finally, a Monte Carlo simulation model is
developed which contains almost all of the physical features
of fire spread in the IITRI model. The spread of fire by fire-
brands across firebreaks, and the effects of ignition prob-
abilities on the rate of fire spread are lllustrated through

the use of this model.
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Chapter 1
INTRODUCTION

i One of the most uncertain of the damaging agents from a

! nuclear attack on an urban area is fire. Despite the exten-
sive research on the effects of thermal radiation from nuclear
weapons on fire initiation, fire growth in buildings, and fire
spread between buildings, there remains uncertainty in the
extent to which fire damage will supplement blast damage,
the survivability of people in fire areas, and the effective-
ness of fire countermeasures. Recent studlies have demon-

_ strated the importance of interaction of blast damage and

) fire initiation and spread, and the need for further research
to adequately understand these interactions. Moreover the
circumstances under which individual fires will coalesce and
give rise to mass fires adds additional problems to the pre-
diction of fire effects.

B it s S

This paper addresses the nature of fire spread between
individual structures, which is the central methodological
i feature of many fire-spread models. It takes as given the
initiation of fires, and the initial growth of fires 1in .
structures. It does not include reinforcement of fires due
to mass fire effects, or blast/fire interactions although it
does indicate how such effects might be added. Within this
framework, this paper concentrates upon methodolcgical implica-
tions rather than physical assumptions. The purpose of the
study 1s to improve fire-spread models by providing a more
basic understanding of the results of various methodological

assumptions of fire-spread effects. 1In particular, it studiles




the implications of performing probabilistic caliculations of

fire-spread rather than expected value caiculations.

Of the various models of fire damage phenomena, the IITRI

Fire Spread Model of A.N. TAKATA [1,2,3] has probably gained

" the greatest acceptance. The IITRI model divides an urban area
into tracts with a number of types of builldings in each tract.
For each building type, fire effects within a tract are assumed
to be uniform. It assesses the likelihood of primary building
ignition by thermal radiation, the likelihood of fire spread
to unignited bulldings by radilation from burning buildings, and
fire spread in and between tracts by firebrands. The IITRI
model has been implemented on a computer and a few trial runs
have been made. Unfortunately, not enough experience has been
acquired from using the model to gain insight into the effects 1
dominating the model.

A simplified version of the IITRI mocdel has been developed
y by Miercort [4] that does not consider the ignition portion of
: the IITRI model, but extends it to allow for multiple weapon

i il

effects and considers buildings that have undergone blast

damage. It thus 1is structured to allow more complex blast fire
interactions. It has been computer implemented, but only a few !
runs with this model have been made. '

In Chapter II, the behavior of the equations of the }
Miercort model are studied. Simplifications are developed
which preserve the general nature of the solutions but which |
allow defining various regimes of fire spread. Criteria are K
developed which glve the total number of buildings burned and
burning times as a functlon of the number of initial ignitions
and initial burning density.

In Chapter III probabilistic effects are introduced
following a string of ignitions down a single or doubtle row @

of ignitible buildings and computing the distributions of




numbers of buildings burned with varying probabilities of
propagation betweern buildings.

In Chapter IV the propagation of fires between buildings
which have a fixed probability of transmitting a fire to an
adjacent building and are arranged in rectangular grids is
studied through a Monte Carlec simulation. The differences in
behavior of the fire spread as the probability of spread is
presented, and measures are developed to describe these
phenomena. The overall fire spread by radiation is compared
to that expected from the IITRI model.

In Chapter V the model is extended to include various
effects. The effects of varying ignition patterns, random
initial ignitions, transmissions of fire in one of multiple
burning periods, and different spread probabilities for each
buillding are all studied separately. Finally, a simulation
model is developed which includes all these effects as well
as fire spread by firebrands. This model includes almost all
of the physical fire spread features contained in the IITRI
model.




Chapter 1II
EXPECTED VALUE RADIATION TRANSPORT MODELS

This chapter will discuss an expected value representation
of fire spread by radiation obtained by simplifying the Miercort
representation of the IITRI model to a single type of structure,
and concentrating attention upon these features of the model
that iInfluence fire spread by radiation. A pair of differential

equations are obtained to describe burning rates. The regimes
of the solutions of these equations are explored. The Chapter
differs from others in this report in that a general familiarity
will be the IITRI fire spread model is assumed.

A target area is represented as a number of tracts which
presumably have fire breaks between them. The fire spread
within a tract is primarily by radiation, and between tracts
by firebrands. The model gives the probability of a burning
building wall igniting an adjacent unburned wall as a function
of the distance between the walls. The distance between adja-
cent walls 1s given as a probability density function which
depends upon the density of buildings in a tract. The follow-
ing paragraphs formalize these concepts.

Following the IITRI model, call the probability function
PR(r) the probabllity that a burning building will ignite
b another at a distance r from it. Call FR(Z) the probability
that the nearest building within 45° from a perpendicular tc a

randomly chosen wall of a randomly chosen building is within
a scaled distance ¢,

e e ~—ER T T s
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where,

£ = r‘v/B-/S,
with r» = the actual distance,
S = the average base dimension of a building,

cal
o = bullding density = &%— , wWith N the number of

buildings in a tract of area A.

Now call p the density of unburned buildings in a tract.
Then the expected number of ignitions produced by a burning
ouilding, SR(p), is given by the integral

SR(p) = Hléi PR(N,r) - ngéE) dr

which sums the probability of fire spread at some distance
times the probability of being at that distance. The factor
4 occurs since a building has four walls that may spread
fire.

In [4], SR(p) is computed to be

0.5

_ |s.sx , T < 6.1 10°2pL72
SR(x) =
6.35%° 199 | T> 6.1 10°°Ft72

where X is defined as J%/S. 3

2
Now o is N%— s, SO

£—=J§=E9

and thus X i1s the number of unburned buildings per unit




10" 2rt 72 corresponds to 2.65 unburned

A value of x = 6.1
= 10722672 (4.027 acre”

buildings per acre. When X = 9.2697
SR(x) is 1, which implies that each burning building fgnites
For larger values of SR than the critical value,

)

b

only one other.

Just after ignition one would expect the number of burning

buildings to increase, for smaller values to decrease. In the
ITITRI report, characteristics of various tracts In the citles
of Detroit, Albuquerque, and San Jose are presented. Values of

X ranged from about 4 to 10 acr'e'1 for most ftracts.

After ignition of a bullding, a certain time is required
for a fire to develop to a point where other buildings may be
ignited. This time delay can vary considerably with the type
of building. We shall take the time delay, td, as a constant
time, b, plus a time exponentially distributed, i.e.,

p(td) = % exp—a(t—b)

Values of b of 1/15 hour (4 minutes) and a of 1/2 hour

will be used later as typlcal values. In the IITRI, studies

(1], a Stage 1 fire is defined as a fire in a room before it
builds to flashover engulfing the entire room; a Stage 2 fire
is defined as a fire spreading from room to room throughout

a buillding; and a Stage 3 fire 1s defined as one fully developed
where other buildings can be ignited. With t in hours, the
probability of staying in a time t in a Stage 1 fire is given
as exp(-3.6t) and in Stage 2 as O for t < 0.08 and
exp(-21(t-.08)) for t > 0.08. In the fire model of [3], one-
fourth of the fire spread by radiation was assumed to occur at
exactly 1/2 hour, one-half of the spread was assumed to occur
at 3/4 hour, and one-fourth of the spread at 1 hour. For
spread of fire by firebrands, three-fourths are assumed to
occur at exactly 1 hour and one-fourth at 1 1/2 hours. Thus,
a mean time of 1/2 hour may be somewhat short and a mean time

of 1 hour somewhat long.

e N
s e i .




The equations describing fire spread including time delays
become stochastic non-linear differentlal-difference equations,
quite intractable analytically. The fire computer programs of
(1,2, and 3] de-emphasize the stochastic nature and obtain numer-
ical solutions of the resulting equations. The approach we
follow below is to study a somewhat 1dealized situation for
transport by radlation where the general nature of the type of
solution becomes evident.

In the spread of fire by radiation within a tract, if
expected values are used and time delay effects are neglected,
then a pair of differential equations can be obtained from the
model of [4] to describe radiative fire spread in a tract as
follows: Let F3 (following the notation of [4]) be the number
of unburned buildings in a tract, and F6 the number of burning
buildings. Assume all the buildings in the tract are of one
type. The expected number of buildings ignited by a burning
building 1s SR(x), where x is F3/A, with A being the tract area.
Let a building spread fire during a period T3; and, as in [4],
assume it 1is equally likely to spread a fire any time in this
period. Then the rate of ignitlon of other buildings by a
burning building is SR/T3.

The rate of decrease in number of unburned bulldings with
time t 1s given by the rate of ignitions, so

ar3 . _ /A)ER -

3t SR(F‘3,A)T3
The change in number of burning buildings is given by the rate
of 1gnitions minus the rate of extinguishment. Thus,

ar

d

F6
T3

(@)}
13
(e

SR(F3/4) -

ct
+3
L

7all X = P3/A. Then SR(x) is as given earlier. Let a dimensiocn-

iless time T be defined by £/T3. Let y be defined as F6/A.

(4}




Then,
dx _
it = -SR(x)y ,
dy - -

O.5673x0'5 s X < 2.657 buildings/acre
with SR{x) =

0.7579x2+199 x > 2.657 buildings/acre

3

The initial conditions are x = X9 ¥ = Yy at t=0.

While these equations cannot be explicitly solved, a few
comments can be made concerning their behavior. A first inte-~
gral of the second equation gives

T
y =Yg exp(fo(SR(x)-1)>do

As long as SR(x) > 1 (x > X, = 4,027), the density of burning
buildings initially increases before it eventually decreases
due to a scarcity of unburned buildings. For Xq < 4.027, the
density of burning always decreases. For Xy larger than this
critical value, the density increases for a period and then
decreases. The burning can be separated into two phases:

X > X, where the fire increases, and x < X, where the fire is
decreasing. Call Yo the burning density when x = Xoe Then the
final fraction of burned buildings depends only on Yo the
density of burning buildings when the peak burning density is
reached at the critical density Xg - Figure 1, obtained from
numerical integration of the differential equation, shows this

function.

Figure 2 shows a set of solutions for x(t) and y{(t) with
several values of initial ignition when the original density,
Xy is 6 bulldings per acre. In this case the criginal density
Xy is greater than 6, so an “nitial increase in burning density
occurs, f{ollowed by a dropoff when the critical density is

9
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reached. Twc types of final burning are illustrated here:

Case A--those where not all buildings are burned when the burn-
x ing dies out; and Case B--where the burning density is greater
then 0 when all buildings are burned. Approximate expressions
3 for the final burning can be obtained for those two cases. For
Case A, assume x is constant, or more specifically, SR(x) is
constant = SR. Then we have

dy .
& = (sr-1)y ,

from which

y =y exp[(SR-1)t] ,

where y is a burning rate when the final phase is approached.
Here 1t is seen that the fire dies exponentially, with an
infinite time required for final extinction.

. For Case B, assume the burning rate is a constant y during
{ the final phase. Then

dx

dt

-SR(x)y ,

-axb§ s

from which
1-b -1l1-b _ = - _=
XT - X = -ya(rT T)

where X and T are values of x and T at the start of the final
phase, and Xz and T are values at the end. Since b has a
value of 0.2, the final decrease in unburned bullding density
is quite rapid.

In Figure 2 where the initial density is 6 buildings/acre,
it is seen that the burning rate does not increase greatly over
the initial rate. The peak in burning rate at various initial
buiiding densities and initial burning rates is illustrated in
Tt 1s seen that th
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burning are always quite steep, indicating that the peak rate
does not grow drastically befcre the decrease in building den-~

sity to the critical value prevents further growth in the burning
rate.

Contours of constant final number of unburned buildings are
shown in Figure 4. Of interest is the low final building den-
sity which is found even when the initial burning rate is rather
small. This occurs, of course, since in the model the burning
rate does not start to decrease until the unburned building
density is 4, no matter how high the initial density.

The number of time periods required for either the fire to
die out or the area to be burnt completely are shown in Figure 5.
These times are given as multiples of the time T3 during which
a building may spread fire. If T3 is assumed to be 3/4 hour,
say, then burning times ranging from 1-1/2 to about 40 hours
are 1llustrated here. This analysis neglected the time delay
between ignition and fire spread. For the shorter time shown,
this neglect wculd have a serious effect upon the rate of fire
spread, which would be significantly slower. For the lower
initial burning rates, however, the change of conditions is
sufficiently slow that neglecting the time delay would not
seriously affect the results.

Underlying these models is the assumption that the density
of unburned bulldings remains uniform in a tract as the tract
burns. If, for example, a tract were ignited in one corner and
a front of burning buildings progressed to the other corner,
thls assumption would be clearly violated; instead of a uniform
density there would be a region of burnt buildings, a front of
burning buildings, and a2 region of unburnt buildings. In this
case the average distance between a burning wall and unburnt walls
would not increase, as 1s the basic assumption in this model
controlling the burning rate. Moreover, the model assumes each
house may ignite four others. While this may be true for initial

ignitions, for an advancing front of burning houses there are

14
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burnt houses behind the front winich cannot be ignited. Thus, an
overestimate of propagaticn prcbaebilities 1is obtained. On the

other hand, when ignitions are random within a tract, the basic
assumptions of these models may be closely approximated, since

the effect of a burned building may then be to increase the ;
average distance between walls. These questions provide one :
motivation for a more basic study of fire propagation within

tracts. :
1




Chapter III
| ONE DIMENSIONAL PROBABILISTIC MODELS

A, SINGLE ROW OF BUILDINGS

Consider a row of bulldings with a constant probability,
0, cf fire transfer from one building to the next. Suppose
building 0 at one end of the row of buildings is ignited. It
may ignite bullding 1; the probability of the event is p. Build-
ing 2 may be ignited only if building 1 is ignited. The proba-
bility of transmission to both building 1 and building 2 is
P *p = p2. For building n, the probability of transmission is
pn. Table 1 gives the expected number of buildings ignited
(given by p/(1-p)) and the 10th, 50th, and 90th percentile
number of buildings ignited for various probabilities, p.
Since zny failure to ignite will cause a termination of the
chain, rather high propagation probatilities are required before

large numbers of additional buildings are ignited.

B. DOUBLE ROW OF BUILDINGS

A configuration somewhat richer in possibilities but still

relatively simple to describe analytically is a double row of
buildings that has a probability Py of transmission of burning

down the row, and a probability P, of transmission across the

]
L row. An example of such an arrangement is a residential block
i representing the probability of transmitting from one

c the next along a street, and p_ rerresenting the proba-~

ility of transmitting across an zll2y to hcouses on the other

3ide of the vlock.
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Table 1. STATISTICS ON IGNITED BUILDINGS FOR VARIOUS
TRANSITION PROBABILITIES

Transition | Expected Percentiles

Probability Number 10 50 90
0.2 0.25 0.06] 0.43 1.43
0.5 1 0.15¢1 1 3.32
0.6 1.5 0.21}1 1.21 4.51
0.7 2.33 0.36| 1.94 6.46
0.8 4 0.47{ 3.11 | 10.32
0.9 9 1 6.57 |1 21.85
0.95 19 2.05(13.51 | 44.89

Now imagine that at one end of the block either one build-
ing is ignited, or both are. Assume that an ignited building
burns for one time pericd, at the end of which it may or may
not ignite adjacent buildings. Then some measure of the dis-
tance the ignitions propagated down the block is desired. One
way to study such a question 1s to classify the various ways
in which a flame front may advance down the double row of
buildings. Figure 6 illustrates such a classification of
burning fronts. In this figure an indefinite number of build-
ings are azssumed to be to the right, indicated by two sets of
double dots. An unburnt buililding is indicated by a * , a burn-
ing building by an x, a burnt building by a z. A u indicates
that a building cannnt influence the propagation of the advanc-
ing front--it may be either unburnt, burning or burnt. This
classification has the property that at the next period any
possible trznsition from ons of the configurations presented
is also cne or these configurations. For example, configura-
tion 5 on the next step could become: (a) configuration 5
if beth tor and tottom adjacent unburnt structures ignite;

(b) confizuration 11 if the adjacent unburned structure on the
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Configuration Number Configuration Comments
_I u x . [ ]
u X . L)
2 - u x . L]
uz - - Even Front
3 u Z . .
u x °
4 uz- -
uz--
u x . L]
s x L] L] L]
x L] [ .
6 u X [ ] .
7 u X . »
z " Front Staggered
v By One Building
8 2z
u X L] *
u Z . []
9 Z L] * *
z L L] .
10 Uz - -
u z x °
1] u L] L] .
u L) . L)
12 uz x °
Front Staggered
13 uzz- By More Than One
u °* * -» Building
u L * L]
; 14 uzz:-
’ + = Unburned Buildings
x = Burning Buildings
z = Burnt Buildings
u = Any Condition

Figure 6. CONFIGURATION OF BURNING FRONTS
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Zor row ignites but that cn the tottom row does nct; (¢ con-

o

3
figuration 3 1f the adjacent unburned structure on the botton
row ignites but that on the tcp row does not; and (4) configu-

ration 9 if neither ignites.

The probability of each of these events can be expressed
in terms of Po and by as shown in Table 2. In the matrix of
probabilities, and i1nitial configurations are represented by
rows, and the final configurations by columns, Ed represents
1l - Pg> and P. represents 1 - b, Thus, for example, the
probability of transition from configuraticn 5 to § is seen
to be (l—pd)z. Now since any possible transition from a con-
figuration is a configiration, and since the transition probabi-
lities between configurations depend only upon the current
configurations and not upon past history, the transitions
form a Markov process with the configurations being states of
the process. If iO is a 14 component vector giving the proba-
bilities of being in some initial set of states, and in gives
the probabllities of being in various states after n transitions,
then in = XO . Tn, where T 1s the transition matrix shown in
Table 2.

States 4, 9, 10, 13, and 14 represent absorbing states
where the burning front can no longer advance; i.e., no build-
ings at the front are burning. As n increases, the probability
of being in one of these states approaches 1. An estimate of
the expected number of buildings burnt is obtained ty summing
the number of burning buildings for each time period as shcwn
in Table 3.! This is actually a lower bound since it does not
include the possibility of burning progressing to the left. For
example, from state 11 (or state 12) a transition coculd be made
to state 3 {or state 2)--now an unburned building is behind a
burning vuilding and could be ignited by it. An estimate of the

' The values in Table 3 were cbtained by simply carrying out encugh
transitions so that at least 99 percent of the time all bulldings are
extingulished. The values thus are slightly lower than the limiting
value for an inrinite number of transitions.
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expected number of back burnings for each entry into state 11
is given by

o

p

i i n =
i - Pg | . Pgne) +Z (pgp,) " * Py
n>i

c
l-Scpd

Values corrected by this estimate are shown in parenthesis
in Table 3. As would be expected, when the transition probabi-
lity down the row is high, but the transition probability
across the row is low, a significant difference is obtained
because a fire may propagate for a considerable distance along
one side without jumping across toc the other side. In other

cases, however, the differences are relatively small.

At each stage, the probability of an advance of the burn-
ing front, i.e., the furthest distance a building is burning
on either side is increased by one, can be determined by sum-
ming the probabilities of all transitions that advance the
burning front. The expected distance the burning front travels
is given by the sum of the expected advances for each time
period. These distances are shown in Table 4. When the tran-
sition probability across rows is 0, the expected distance the
front advances is the same as the expected number of buildings
burnt. As the across-row transition probability approaches 1,
the expected distance travelled approaches 1/2 the expected
number of buildings burnt, slnce with each advance the build-
ing across the row will be burnt in the next period, if it is
not already burnt.

Table 4 shows the strong effect a double row of structures
has upon the propagaticn of a front. With only a single row
of buildings (or, equivalently, an across-row transition proba-
bility of 0), any break in the chailn of transition will cause
extinguishment. With the double row there must be simultaneous
failures con =ach side before this can occur. It is svident

that this provision of alternative paths has a drastic =ffect

25




Table 4. EXPECTED DISTANCE FOR BURNING FRONT TO
TRAVEL BEFORE EXTINGUISHMENT

Transition Transition Probability Across Rows, Pe

Probability

Along Rows, Py 0 0.2 0.4 0.6 0.8 1.0
0.2 0.25 0.30 0.36 0.42 0.49 0.56
0.4 0.67 0.84 1.03 1.24 1.49 1.77
0.5 1.00 1.29 1.61 2.00 2.44 2.96
0.6 1.50 2.01 2.60 3.31 4.17 5.22
0.7 2.33 3.33 4.52 5.94 7.63 9.63
0.8 4.00 6.39 9.89 13.00 17.35 22.63
0.9 9.00 19.44 32.37 48.56 69.87 98.73
0.95 19.00 61.50 115.06 183.93 274.09 398.12

upon the results. This leads to the important supposition that
the propagation of fire by radiation within a block may be sig-
nificantly affected by the detailed geometry of that block.

The previous results all assumed only one building was
ignited at the end of a row. If two bulldings are ignited and
the transition probability is 0, then one would expect that
exactly twice the number of buildings would be burnt. As P,
becomes larger, the difference decreases. Thus, for example,
the expected number of bulldings burnt when Pg = 0.9 and
P, = 0.2, the numbers are 31.16 for one initial ignition and
38.93 for two; at P, = 0.4, the numbers are 58.34 for one
initial ignition and 64.75 for two. The effect of the double
ignition vanishes after a few transitions when the chance for

the burning to sklp across to the other row becomes significant.

oy




Chapter 1V

FIRE SPREAD IN SIMPLE RECTANGULAR GRIDS

This chapter considers fire spread in a rectangular grid
covering the entire plane. No appropriate analytical description
of this situation has been found; so the description presented
here is primarily a heuristic analysis of the results of Monte
Carlo simulations.

Consider a rectangular grid convering an entire plane where
burnable structures are assumed to be at each grid intersection.
If one structure 1s ignited, then it may ignite any of its four
neighbors with a probability p.! After burning one period, these
structures in turn may ignite any unburned neighbors, which in
turn may 1gnite still others in the next period, and so on. ©On
different trials a variety of burning and burnt patterns will be
experienced, after traversing a variety of paths.

Although no proof has been developed, it appears likely
that for transition probabilitles above some critical value,
the process 1is likely to continue indefinitely; in fact, a
reasonable hypothesis is that for a transition probability
greater than 0.5, the expected number of structures ignited
i1s infinite, while at lower than 0.5 it 1s a finite value.

'In (1], the number of ignitable structure walls close to a burning wall

that might be ignited by radiant transport was investigated. In most cases,
only one such structure was 2t danger from each wall. Since most structures
have fcur primary walls, the rectangular grid where eac:: burning structure
can ignite only 1ts four closest neighbtors seems most appropriate. If
several structures in a row are burning, the radiation received by a nearby
unburnt bullding wall is the sum of the radiation from all of the burning
bulldings, so its probability or ignition should be increased. The lncrease
is neglected here, but would be an excellent item for further study.
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Qf course, early in the process no ignition might occur with
reasonably high probability and the process could terminate;
however, if the process does continue for later trials, the
length of the boundary between burned and unburned points

grows indefinitely and the ratio of actual new ignitions at
some time period to possible new ignitions approaches a con-
stant value. Thus the growth may be expected to continue inde-
finitely if the transition probability is high enough that a
linear boundafy may continue to travel.

As the transition probabilities change, different char-
acteristics of the burning propagation are apparent. These are
illustrated in a set of figures for various transition proba-
bilities. PFigure 7 illustrates a burning history for a transi-
tion probability of 0.3. 1In this figure the ignitable buildings
form a 23 x 23 matrix. (The outer row is precluded frem burn-
ing so in reality the matrix is 21 x 21.) Ignition of one
building occurs at the center of the matrix, i.e., at row 12
and column 12. The buildings ignited are those elements of the
matrix with nonzero values. The numbers represent the number
of time periods from the time a building was 1gnited to the
final time period when no more ignitions occurred. (After this
last perlod there were no more filres in the matrix, even though
on occasion fires would be burning beyond the boundary. The
possibility that fires propagated outside the matrix at one
point may burn back at another and igaite more structures if the
matrix is ignored here.) Thus, in Figure 7 the last bulldings
ignited are indicated by 1, the next to the last by 2, and the
first buillding ignited by 7. The contours are drawn at various
time intervals simply to assist in visualizing the progress of

the fire spread.

The propagation illustrated in Figure 7 1s typical of the
spread at this low transition probability, namely, a small
growth followed by extinguishment. The probabllity that a

28
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point will cause further ignitions depends upon the number of

cpen branches (i.e., adjunct unburned buildings). Table 5

gives these probabilities. At the start there are four open
branches, therefore, there is a 25 percent change of extinguish-
ment. If there 1s one ignition, then the probability of extin-
guishment is 0.343 in the second period because the next point
has only three open unburned braches available to it. If there
are two ignitions in the first period, the probability of extin-
guishment is 0.118 in the second period. However, Table §
cannot be used to compute the expected number of ignitions 1in
the second period because it is possible that each burning
structure would ignite the same unburned structure, and those
would be double counted.

Table 5. PROBABILITY OF N IGNITIONS AT
0.3 TRANSITION PROBABILITY

Number Humber of Ignitions

of Open

Branches 0 1 z 3 4
4 0.24 0.41 0.26 0.08 0.008
3 0.343 0.44 0.19 0.03 0.00
2 0.49 0.42 0.09 0.00 0.00

Table 6 gives the probability of n ignitions on the
first trial, the expected number of ignitions in the first
pericd, the expected number of ignitions in the second period
for n ignitions in the first periocd, and the expected number
of buildings ignited 1in the second period. The expected
iznitions in the second period Include the double counting.
For example, suppose three btuildings were ignifed in the first
period. Without double counting each buillding could ignite
“hree others for a total of nine pctertial bturning buildings.

Adithout double counting, at a transition probtabllity of .3,
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Table 6. STATISTICS FOR IGNITIONS FOR FIRST TWO BURNING
PERIODS FOR VARIOUS TRANSITION PROBABILITIES

Probability of n Ignitions Transition Probability
in First Period 0.3 0.4 0.5 0.6 0.7
n=20 0.24 0.13 0.06 0.03 0.01
n =1 0.41 0.35 0.25 0.15 0.08
n =2 0.26 0.35 0.38 0.35 0.26
n =3 0.08 0.15 0.25 0.35 0.41
n = 4 0.01 0.03 0.06 0.13 0.24
Expected Number of Igni-
tions in First Period 1.2 1.6 2.0 2.4 2.8
Expected Number of Ignitions
in Second Period Given n
Ignitions in First Period
n=290 0.00 0.00 0.00 0.00 0.00
n =1 0.9 1.2 1.5 1.3 2.1
n=2 1.74 2.30 2.87 3.43 3.98
n=3 2.56 3.35 4.13 3.95 5.53
n =4 3.45 4.57 5.65 6.68 7.52
Expected Number of Igni-
tions in Second Period 1.05 1.84 3.17 3.69 5.29

an expected 2.7 buildings (= 9 x 0.3) would be ignited, whereas
Table 6 shows the actual expected ignitions to be 2.56, about
a 10 percent lowering.

For subsequent perlods the number of possible configura-
tions increases drastically, and calculations of all possible
cases becomes most tedious. Table 7 presents the expected
number of ignitions from n open branches assuming no double
ignition possibillities. Such possibilities would serve t©o
lower somewhat the values given. Thus, 1t can be seen for a

transition probability of 0.3, the expected number of ignitiocns
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Table 7. EXPECTED NUMBERS OF IGNITIONS FOR
N OPEN BRANCHES

Transition Probability
Number of
Open Branches 0.3 0.4 0.5 0.6 0.7
3 0.9 1.2 1.5 1.8 2.1
2 0.6 0.8 1.0 1.2 1.4
1 0.3 0.4 0.5 D.6 0.7

from each burning building is always under one and an extingulsh-
ment is to be expected.

For a value of transition probability of 0.5, say, the
case 1s more complex: When three open branches are available
to a burning point, the number of fires multiplies; when two
are available, the fire stays constant; with one, the fire
dies. The development depends upon the number of open branches
and the serilousness of double ignitions. From Figure 7 the
number of open branches, n, available to each burning build-
ing can be counted. They are: n =4 is 1, n = 3 is 14,
n=21d4s 5 and n = 1 is 2. Thus, 1in the preponderance of
situations in this trial, three open branches were available.
Thus one might expect a relatively slow dying out of the burn-
ing. This trial had a relatively high number of ignitions in
the third period but was chosen to show some appreciable
burning period. The actual number of bulldings burning in
this trial at successive periods was 1, 3, 3, 3, 5, 4, 3, O.
The number of possibilities for double ignitions is eight.

On the average, with eight possibilities for 2 bulilding to be
ec*t

ignited from two sources, one would ex igniticns 3.92

0
mes, and 1znition

[

°
times, igniticn from one structure 3.35 ¢

from beth builldirgs 0.72 times.

a2l with a 0.4 ¢ransi<icn

-

Ficure 2 shows a burning ¢
crotability. The same general -S=ndencles 23 wizth the 2.:

ton pretacilicy 2an ts ocserved,
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Three cases of transiziaznz: wisn 2.7 rrobablilities are shown in
Figures 9, 10, and 1I. Zir:z Znls 2.7 zrobability shows the
greatest varilation from crial T2 trial, *tnese three cases are
shown to illustrate the ncssibll.cties In Figure 11 the method

cf presentation is vari=d, with the arrows between buildings
indicating the direction of the transitions that occurred. I
case of possible double igniting, both possibilities are shown,
since that which actually caused the ignition is not of inter-
est. Figures 12, 13, and 14 show trials at transition probabi-
lities of 0.6, 0.7, and 0.8, respectively.

One means of describing the results of a trial - is in terms
of the number of builldings burning and number of open branches
for each burning building at each burning period. These sta-
tistics are summarized for the trial precented in Figure ¢ and
Table 8.! 1In this tatle the number of predicted burnings for
period n + 1 is computed on the basis of expected results at
period n. To do this, the number cf triple branches is multi-~
plied by the expected number of burnings per triple branch,
i.e., 1.5, double branches by 1.0, and single branches by 0.5.
From this is subtracted the expected number of double ignitions
for each double trial, i.e., 0.25. It can be seen that the
number of ignitions on a successive trial can be predicted

fairly well from the statistlcs on a previous trial. What cannot

be easily predicted are the meanderings and starts and stops of
the burning front.

Table & shows that the number of burnings with two open
branches is comparable to that with three branches, although
the ratio between the two changes drastically from trial to
trial. Apparently the pattern is still not large enough to

exhibit any approacn to regularity in these statistics, and,

171 order to obtain statistics for more trials, the resulis in
were extended a bit at the borders o the tableau iy some hand drawin
>f randem nurkers.
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as can be seen from Table 3, the growth or decay in a particu-
lar part of the front can significantly affect the statistics

of the whole pattern. Table 9 presents statvistics comparable

to Table 8 but for the 0.3 probability case of Figure 7. By
comparison, it can be seen that the pattern dies out too rapidly
for any significant development beyond the starting steps.

A steady growth of the number of burnings is apparent from
Table 8. There appears to be a slight bias for the predicted
burnings to be larger than the actual burnings, although the
overall ratio of predicted to actual burnings for all trials is
only 1.03. The final column in Table 8 shows the ratio of
burnings predicted for the next period to the actual burnings
for the current period. As can be seen 1in all but three periods,
a growth in the pattern 1s predicted, but it is a variable rate
of growth. The actual growth, of course, is subject to the
drawing of random numbers, and the variation in the growth
pattern due to these random trials is difficult to estimate.

If there were no double ignition trials, then the variance of
a binomial distribution would represent the variation expected.
With double ignition trials, a slightly lower variance occurs
due to the different statistics of these trials. The standard
deviation of the number of burning buildings in period 13,
computed on the basis of buildings burning at trial 14, is 1.6.
The difference between predicted and actual successes near the
end of the periods presented 1s compatible with these values.
Moreover, this standard deviation is small enough and the pre-
dicted growth 1s large enough that, in only a few cases, would
decrease 1in growth be expected. This is observed in the table.
Thus, while the eventual extinguishment of the pattern is possi-
tle, an early extinguishment of the pattern with 0.5 ignition
probability would appear to be quite unlikely.

Table 10 presents statistics comparable to Table 8, but
for a transition probability of 0.7 where the fire is expected

|
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|
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Table 9. STATISTICS FROM A TRIAL WITH 0.3 PROBABILITY

Period Ignition Branches Ngggg;eof Actual Predicted
Number 4 3 2 ] 0 Trials Burnings Burnings

7 1 1

6 3 2 3 1.2

5 3 0 3 2.7

4 3 i 3 2.7

3 3 1 1 2 5 2.69

2 2 2 4 3.42

1 1 i 3 2.82

b e

to spread indefinitely. It should be mentioned that the ratio
of predicted to actual burnings should approach 1 as the pattern
becomes larger, even though the growth continues indefinitely.

In a gross sense, the rate of growth should depend upon the
radius of curvature of a circle enclosing the entire pattern.

As this radius becomes larger, any local portion of the pattern
appears to be advancing along a plane front where no overall
growth in the number of burning structures would be expected as
long as the geometry of the front remains approximately constant.

Substantial numbers of unburned buildings completely
surrounded by burned buildings are seen in the 0.5 probability
trials. There are 21 in Figure 9, 10 in Figure 10, and 12 in
Figure 1l1. In some patterns where there is an apparent strong
growth of the burning pattern in one direction to the edge of
the tableau, one could expect an eventual turning back and
encircling of other unburned areas. The resultant effect on
the density of unburned areas s difficult tc hypothesize.

As growth continues, the gress features of the patterns may
or may nct continue, so the size and density of unburned
areas may or may not be comparsable. A ccnsiderably more com=-

clate computer orogram 1s needed to execute the simulation and

ot
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to address such questions, which may be of considerable academic
interest but little practical interest.

In Figure 14, with a transition probability of 0.8, a con-
siderable different type of growth is seen. Here the burning
front 1s almost in the form of a diamond-shaped pattern moving
regularly out from the center of ignition. The pattern is ,
approaching the perfectly diamond-shaped pattern one would have ]
with transition probability of 1. It can be seen that even j
though there are occasional fallures of ignition along the
advance, the mechanics of the problem allow the front to reestab-
lish 1itself and progress.

At a transition probability of 0.7, shown in Figure 13, o
the same basic trend occurs but the linear front reestablishment
mechanism is not as strong. Table 10 summarizes some of the
statistics from this trial. For a transition probability of 1,
there would be four 3-branch bulldings at the corners of the
diamond, and all others would be 2-branch buildings. As can be
seen, the ratio of 2 tc 3-branch bulldings is about 2 to 1.

This In effect indicates that whatever growth along a linear

front appears to dominate, it is frequently interrupted by non-
ignitions and a subsequent fairly slow process of reestablish-
ment. A perusal of the 0.5 transition probability trial shows
some tendency for a diagonal front to persist if it becomes
establlshed, but 1t has 1ittle tendency to reestablish itself.

In order to compare the present results with variations
to be presented in the next chapter, a measure of how many
buildings are burned is desired. Due to the finite size of
the tableau, no measure of total numbers burned is possible.

The measure chosen 1s the fraction of ¢times a building is
burned when it is at a given distance from the center of igni-
tion; i.e., the total number of steps from the center, where a
step can be elther horizontal or vertical. These are presented

bs
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in Figure 15 for transition probabilities from 0.3 to 0.65.
The results in Figure 15 are values averaged over 100 trials.
Since even at 100 trials some variability in averaged results

- is evident, the values presented contain some additional smooth-
ing, hopefully unbiased, of the summary results. For values of
transition probability below 0.5, the finite edge effects are
low, but for values appreciably above 0.5, doubling back of the
pattern may serve to increase the fractions appreciably. The
critical transition in the character of the fire spread at
0.5 is evident from this figure.' Below this value the burn-
ing rapidly quenches, but above, it soon extends indefinitely.
At values of 0.6 and above, values less than 100 percent are
mos%ly from occasional early extinguishment of the burning
and encircled regions of unburned buildings.

These results present a problem 1ln reconciliation with the
simplified IITRI model. The critical transition probability of
0.5 applies to the transfer of fire by radiation from one side
of a buillding to another. However, this would have to be multi-
plied by 4 to give the value of SR which controls for growth,
as described in Chapter 2. Conversely, SR values of 1, the
critical value in the IITRI model, are equivalent to a value
of transition probability of 0.25, at which no appreciable
spread 1is expected. The values for representative tracts
(presented by IITRI in [2]) at separation distances of 30 feet
or greater are almost all below 0.5. It appears that a more
complex measure of separation accounting for actual locations
in a block, as well as reinforcement of radiation intensities
by several nearby burning buildings, may have to be considered
in order to achieve higher fire spread probabilities. The
infinite rectangular grid, moreover, tends to give more spread
than typical city block patterns, so even higher probabilities
might be needed with actual city patterns.
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Chapter V

FIRE SPREAD IN GRIDS UNDER VARIQUS CONDITIONS

A. SIDE IGNITION

Figure 16 exhibits the results of a trial where the tab-
leau size is increased to a 21 by 48 matrix and the initial
ignition occurs at every element along the left nand side of
the matrix. The transition probability used is 0.5 since,
in this case, the entry of effects from the absorbirg sides
is delayed. Despilte the side ignition, the results do not
seem to differ significantly in a qualitative way from the
single center ignition, except that the enclosed unburned
areas appear somewhat larger in size. The initial uniform
side ignition gives an initial uniform fire spread, however
this soon approaches the irregular patterns seen with the
center ignition. Figure 17 presents another trial at 0.5
probability with arrows indicating the path of fire spread.

B. MULTIPLE BURNING PERIODS

In the previous calculations 1t was assumed that a
structure burns for only a single period after which it igni-
tes another structure with a probability p. In this section
we assume that a structure burns for n periods and, at the
end of each n period, it may ignite an adjacent structure
with a probability Pp- In order tc find Ph equivalent ©o
p, one wants to equate the probability of not igniting an
adjacent structure at the end of one period with the probabi-
lity of not igniting an adjacent structure at the end of

2ach of n periods.
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Figure 17. GRID FIRE SPREAD HISTORY SHOWING IGNITION PATHS
FOR A TRANSITION PROBABILITY OF 0.5, SAMPLE B




PRl a0
.

From this one deduces
1/n

P, 1 - (1-p)

Two 100 trial runs with a single center ignition were made
with n = 3 and P, = 0.2063 and with n = 10 and P, = 0.0670.
For each trial run the related p was 0.5. The patterns obtained
appeared qualitatively similar to those with a single burning
period. The fractions burned as a function of distance were
computed and compared with those of Figure 15. No differences
could be observed within the statistical accuracy of the results.

Another test for possible differences is the number of
time periods required for extinguishing all fires. A histogram
of burnout times for 1, 3, and 10 burning periods 1s shown in
Figure 18. 1In this figure, the time for 3 burning periods is
divided by 1.5, and for 10 burning periods by 5. Thus the
periods from 40 to 45 (say) for 1 burning period correspond
to the periods from 200 to 225 for 10 burning pericds. The
mean burnout time for 1 burning period is 26.9 periods; for
3 burning periods is 1.66 times that for 1; and for 10 burn-
ing periods is 5.02 times that for 1. The ratio of mean values
for 10 periods 1s what would be expected because, on the aver-
age, a bullding will propagate burning in the middle of its
veriod of burning, which in this case is 5 periods. Thus one
would expect the transmission to be 5 times as long. For
nree periods, 1.65 ratio for the mean is close to 1.5, but the
fact that no transmissions occur after 1.5 periods (but only
after 1 or 2) might affect the mean value. With this differ-
ence in mean values in mind, the histogram in Figure 18 shows
no statistically significant differences with length of burning
periods.

The frequency of occurrence of burnouts in less than 10
or 15 periods shows no effect of the finite size of the com-
puting m=trix; these are trials where the burning is quenched
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before reaching the edge of the matrix. However, the later
burnouts are affected by this restriction, and the mean value
5 of number of periods only has meaning when related to the

' particular size of the grid used.

! C. VARIABLE TRANSMISSION PROBABILITY g

In th's section the effect of a variable transmission
probability is discussed. It is assumed that for each build- _
ing, the probabllity of ignition is selected at random from a .

el

uniform distribution between p - op and p + op. One building
willl be ignited in the center of the matrix and may transmit
burning only at the end of a single burning period.

B
S

For a single row of bulldings transmitting fire in sequence
down the row (see Chapter III, A.), it can be readily shown
that the expected number of buildings ignited depends only upon
p and is independent of op. For more complex geometries the
question 1is solved by simulation.

In Figure 19 the results of a set of simulations are pre-
sented where the percentage of buildings burned at a given rad-
ius 1s plotted as a function of that radius (the same as in
Figure 15). 1In these calculations a set of building iznition
probabilities was drawn; 10 simulations were made with this
set of probabilities, and then another set of ignition proba-

bilities was drawn. The base case may be taken as the curve

with p = 0.5 and cp = 0.3; i.e., a uniform distribution of

probability of ignition between 0.2 and 0.8. This case was

computed using 1,000 trials in the simulation--sufficient to

give falrly smecoth results. The results are qualitatively

similar to those of constant transition probability, except

that somewhat fewer bulldings seem to bturn. The curve labeled

(0.5,0) 1s for 0.5 transition probability and no variation frecm

1t. This curve was taken from Figure 15 and also presents )
results from 1,000 trials. There 1s deflnite decrease in the
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Figure 19. PERCENTAGE OF TIME WHICH BUILDINGS, AT A GIVEN
RADIUS, ARE BURNED FOR VARYING TRANSMISSION
PROBABILITY




amount of burning, even though the mean probability is the
same. By compariscn with Figure 15, the results are comparable
to that which might be obtained for a constant transition
probability of about 0.48.

The remainder of the curves in Figure 19 were computed
with 100 trials each; this number was adequate to give reason-
ably steady summary statistics. The overall trends seem suf-
ficiently reliable. The set of curves 1s at constant transition
probability with variable cp. The curve labeled (.5,3) has
a cp of 3, which in effect is a distribution where U0 percent
of the bulldings have 0 transition probability, 40 percent
have 1 transition probability, and 20 percent are uniformly
distributed between 0 and 1. A comparable constant ignition
probability for this extreme case is about 0.44, a six percent
dropoff. A second set of curves on this figure all have a
op of about 0.3. Comparison with Figure 15 indicates that this
value of cp seems to cause about a two percent drop in effective
transition probabllity over the entire range considered.

If fires are being propagated in a blast-damaged ares,
and if structures in this area have different vulnerabilities,
some are more heavily damaged and, presumably, less susceptible
to ignition Ly radiation. Thus the effect of the blast can
be considered as two-fold--first to lower the mean suscepti-
bility to fire, and second to increase the variability of the
tract in fire susceptibility. It can be seen from these cal-
culations that the primary effect 1is lowering the mean trans-
mission probability. The increased variability has some, but
not a great effect on fire spread.

D. RANDOM INITIAL IGNITIONS

In this section the burning resulting from several igni-
tions randomly occurring within a grid is studied. The gques-
tion is of particular interest for fire spread probabilities
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below 0.5, where a single Ignition can be expected to burn

out only a restricted area. Various 1Initial ignition proba-~
bilities were assumed, and by drawing random numbers, actual
initial ignitions were obtained and subsequent fire spread
determined. Since low fire spread probabilities were used,
the results near the center of the grid are essentially free
of finite edge effects. The process was repeated 100 times

to collect summary statistics. Filgure 20 shows the percentage
of a tract burned as a function of probability of fire spread
for various 1nitial ignition probabilities.

For zero probability of fire spread, the fraction of the
tract burned is given by the initial ignition probability. As
the fire spread probability increases, more of the overall
burning is accounted for by fire spread than by initial igni-
tion. Finally, as the fractlion burned approcaches 1, greater
increases in either initial ignition probability or probabi-
1ity of spread are needed to cause the unburned fraction to
become substantilially 1less.

Figure 21 presents the results of a trial where the igni-
tion probability is 0.1 and the transmission probability 0.3.
In Figures 22 and 23, the ignition probability is 0.2 and the
transmission probability is 0.3. The circles on the figures
indicate ignition points. Figure 23 shows the paths of burn-
ing. From these figures it 1s seen that a fairly large frac-
tion of initial ignition propagates tc the point where they
intersect the propagation from other ignitions. The expected
number of burnings from a single ignition, including the ignited
building, on the basis of 100 trials with a single center igni-
tion, was 3.9. Multiplying the value by the probability of
ignition gives 1.1%, which implies a substantial amount cf
overburning. Figure 20 shows that the fraction turnt was 0.5¢.
Interference of the fires frcom the two ignition sources would
cause the total fraction burnt tc be lower, and this is why a

larger total fracticn was not cttalned.
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E. RADIATION AND FIREBRANDS SIMULATION MODEL

The previous section described the propagation of burning
by radiation in a variety of situaticns that purposely were
kept as simple as possible. We did this tc illustrate the
nature of several mechanisms that might affect burning propa-
gation. The purpuse of the full simulation is to include, in
the basic probability model, several effects from the IITRI
model that could significantly affect burning propagation. The
basic propagation model remains the rectangular grid model.
The following characteristics are included with the model:

(1) propagation of fire by firebrands; (2) each building is
characterized by a propagation factor and susceptibility fac-
tor for both radiation and firebrands; (3) barriers may be
included; (4) random ignition occurs at the left border of the
matrix; (5) the time at which a building can propagate fire

is stochastic.

In the implementation of the model an array TSTATE(i,])
describes the condition of a building in the ith row and jth
column. If an element of the array has a zero value, the
structure is not yet ignited. When a structure is ignited, the
time at which the structure can ignite other structures is
drawn from a probabllity distribution and recorded in the array
TSTATE. The simulation time 1s advanced in regular steps,
usually 1/4 hour. When the time equals the time at which a
building can propagate fire, then the immediately surrounding
buildings are tested by drawn random numbers to see if they
can be ignited by radiation. The basic propagation probability
is multiplied by a radiation output parameter from the burning
building, and a radiation susceptibility parameter from the
potential host building stored in other data arrays, to cobtain
a modified probability. If host structures are ignited, they
nave numbers drawn to determine when they, 1n turn, can further

propagate fire. After testing for radiation propagation, a

(@M
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test 1s made for firebrands. A landing location for a fire-
brand is drawn from a distribution function of firebrand impacts.
The building is ignited based upon comparing a random number to
the probability of firebrand ignition, modified by a firebrand
output parameter and firebrand susceptibility parameter. By
selection of radiation and firebrand output and susceptibility
parameters, various geometric configurations can be simulated.

The time delay before fire spread was taken as a constant
delay plus an exponéntially distributed random variable. The
constant time delay was 0.06 and the decay constant for the dis-
tribution 0.5. If the unit of time measurement is hours, the
mean time for fire spread 1s 0.56 hours (or 34 minutes). If the
unit of time measurement 1s two hours, then the mean time for
fire spread is about 65 minutes. The times appear consistent
with IITRI estimates.

In Figure 8 of [2], the expected number of buildings ignited
per burning building is presented. The value is 0.1W where W
is wind speed in miles/hour. Rather than follow individual
firebrands, as in the IITRI model and [4], this simulation
matches the expected number of "standard building ignitions"”
by firebrands, where a "standard bullding ignition" is one pro-
duced by a donor tullding with firebrand output parameter = 1,
and firebrand susceptibility parameter = 1. Figure 5 of [2]
presents a curve of density of firebrands, which might cause an
ignition, as a functlon of distance. Since the firebrands are
spread over a constant dispersion angle (700), if the density
at a certain distance is multipiied by the distance, and the
resulting values for all distances normalized to produce an area
under the curve of 1, the resulting curve gives the probability
that a firebrand that will cause an ignition will produce this
ignition at a ce2r-ain distance. This curve 1is opresented In

is Dol

-

Figure 24. Th figure is for a wind speed W, of 4 mphn.
-

lowing IITRI, 1'or other wind speeds W the distance is multivrlied
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by %L. In the simulation a random number is drawn and the
0

distance associated with the random number is determined from
Figure 24.!

Another random number 1is drawn from a uniform distribution
to find the angle from downwind where the firebrand lands (for
simplicity in the calculations the wind is always assumed to be
blowing from left to right in line with a row of buildings).
The nearest building to the resulting impact location is found,
assuming some given spacing between buildings in the grid,
here 50 feet. A random number is drawn to determine ignition.

If the bullding is not ignited, no more firebrand tests are
mad for the donor structure in question; if the building is
ignited, the process is repeated.

An illustration of simulation results 1s presented in
Figure 25. The initial ignitions were allowed to accrue in the
the leftmost four columns, with the ignition probability 0.6
in the leftmost row, decreasing linearly to zeroc in the fifth
row. The wind speed is 4 mph, with each burning building
having an expected number of firebrand ignitions of 0.1. The
mean radiation transmission probability is 0.5. The output
and susceptibility parameters are uniformly distributed between
0.7 and 1.3. A 250 foot firebreak is assumed in the middle of
the matrix, so the susceptibllity parameters for columns 9
through 12 are zero. The initial ignitions are shown in the
first block of Figure 25. The succeeding blocks show ignitions
at intervals of 10 time steps; here, 5/8 hour if a mean time
delay of 1 hour for transmisc?'~a is assumed. The numbers in

the tableaus give the iteration step when the building was

' the actual curve, 10 tabular values of distance are stored. An integer
from 1 to 10 is drawn to select a tabular value, and ancther number is
drawn to select an actual lccation in the Interval. The distributions
in the interval are uniform, except for the interval with the highest
distance where an exponential distribution is used. Then there is a
slight chance for travel to ccnsiderable distances.
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Figure 25. (concluded)
ignited with a 1/16 hour duration of each iteration step. :
Figure 26 shows the ignitions that were made by firebrands, by G
a line extending from the igniting to the ignited buildings. :
It can be seen that four structures were ignited by firebrands
crossing the firebreak.

By estimating the location of the burning front at differ-
ent times, the rate of propagation of the burning front can be
calculated. The calculation is subject to some error due to
the 1rregular nature of the front. Figure 27 presents an esti-
mate of the rate of propagation of the front as a function of
probability of fire spread. A mean burning time for the igni-
tion distribution of 0.5 hours is used. The output and sus-
ceptibillity parameters are uniformly distributed between 0.7
3 and 1.3. The no-firebrand-curve can be estimated falrly well.
The value of the rate of propagation at a probability of spread
of 1.0 1s simply the reciprccal of the average time a building
burns bvefore igniting another and is probably a slightly low

estimate. The rate of spread with firebrands can be estimated
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at 0.4 and 0.5 probability. At 0.4 probability, the estimate
1s affected by the fairly high probability of a fire dying out.
At 0.5 probability, the propagation 1s very rapid, and the
effective propagation rate is affected strongly by the rate at
which firebrand-ignited centers grow and coalesce. For a prob-
abllity of spread of 1, the rate of front propagation may be
estimated roughly as the product time delay from ignition to
propagation and the average distance of firebrand propagation,
a value of about nine buildings per hour, or a little less than
a 1/10 mile per hour, is obtained. This rate, of course,
depends upon wind speed. With wind speeds of 20 mph, a propa-
gation rate of 1/2 mph for the burning front can be achileved.

In order to obtain a measure of the effects of firebrands
and barriers on the total number of builldings burned, the per-
cent burned in the center portion of the matrix on each side of
the barrier was computed for 20 trial runs. The 5 rows on the
top and bottom of the matrix and 4 rows in the end were ignored
to minimize side and end effects, and the first 4 rows ignored
to eliminate starting effects. Table 11 presents the percent
burned in the two areas, with Pn the radiation transition
probability.

For these calculations, the wind speed 1s 4 miles per hour
and the expected number of firebrand ignitions for each building
ignited is C0.1. The first two sets of cases in this table illu-~
strate the effects of firebrands upon the percent burned. The
effect appears relatively greater for the buildings in the fur-
ther downwind tract, as would be expected since this tract will
receive firebrands from a larger number of builldings. From
Table 7, which presents expected number of ignitions from build-
ings with various numbers of unburned neighbors, we see that
increasing the transition probability from 0.4 to 0.5 would
increase the expected number of ignitions by a factor of 1.25
(assuming half the ignitions are from two-branch burnings and
nalf are from three-branch burnings). Thus, an expected number

21




Table 11. EFFECT OF FIREBRANDS AND BARRIER ON PERCENT OF
BUILDINGS BURNED

Before Barrier| After Barrier
Columns 5-8 Columns 13-19
Conditions Rows 7-17 Rows 7-17

No Firebrands,
No Barrier

p, = 0.5 73 53

P, = 0.4 34 1

Firebrands,
No Barrier

Py = 0.5 90 85
P, = 0.4 58 48
Firebrands,

Barrier
Ph = 0.5 79 48
Ph = 0.4 52 16

of firebrand ignitions of 0.1 is equivalent (strictly in terms
of expected ignitions) to increasing the radiation transition
probability by 1/3. Comparing the 0.4 firebrand case with the
no firebrand case (in the table) would indicate results consis-
tent with a 0.43 transition probability.

The effect of a barrier decreased the downwind fraction
burned from 85 percent to 48 percent with a 0.5 radiation
transition probability, and from 52 percent to 16 percent with
a 0.4 transition probability. In both cases the majority of
the reduction appeared to be due to large sections simply not
happening to be ignited by firebrands on individual trials.

The 250 foot barrler had a significant quenching effect on fire
transfer.
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A Parametric Study of Probabilistic Fire Spread
Effects, (IDA Paper P-1372) by Leo A. Schmidt,

Jr., Unclassified, Institute for Defense Analyses,
September 1979, 87 pages, (Contract DCPA01-77-C-0215,
Work Unit 4114G)

Abstract

One of the basic mechanisms governing the magnitude of
fire damage in an urban area resulting from a nuclear
attack is the fire spread between individual structures.
This paper Investigates the effects of various method-
ological assumptions, using the basic physical models
of fire spread by radiation and firebrards contained

in the IITRI model. As an introduction to probabil-
listic effects, various regimes of solutions to fire
spread by radiation in irdividual tracts are obtained
by simplifying the ITTRI model.

The spread of fire down rows of bulldings and in rect-
angular grids, when each structure has a constant
probability of igniting adJacent structures, is followed
through a Monte Carlo simulation. Changes in fire
spread patterns, as the probabilitles are changed, are
illustrated. The effects of varlous complicating
features, such as random initial ignitions ard varying
ignition probabilities for each structure, are studied
individually. Finally, a Monte Carlo simulation model
1s developed which contains almost all of the physical
features of fire spread in the IITRI model. The spread
of fire by flrebrands across firebreaks, and the effects
of ignition probabllities on the rate of fire spread
are 1llustrated through the use of this model.
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angular grids, when each structure has a constant
probability of igniting adjacent structures, is followed
through a Morte Carlo simulation. Changes in fire
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The spread of fire down rows of bulldings and in rect-
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probability of igniting adjacent structures, is followed
through a Monte Carlo simulation. Changes in fire
spread patterns, as the probabilities are changed, are
1llustrated. The effects of various complicating
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features of fire spread in the IITRI model, The spread
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